第277頁

2023-09-30 01:18:05 作者: 術小城
    穆勒快速審視瑪麗的報告文書,這實際上是一篇尚未完成的數學論文:「瑪麗,你這幾個月付出了艱辛的努力,但好像並未看到什麼新東西。恕我直言,這篇論文目前的具體論述、證明顯的老套,甚至有些乏味。一百多年過去了,該用的辦法都已用盡,我們必須激發創新的思維模式,才有可能破解RH。」

    「教授,你說的很對。」瑪麗有點沮喪,但並未低下她驕傲的頭顱。

    「RH?」旁聽的沈奇莫名的激動了一下,數學界的RH縮寫不多,瑪麗是研究數論的,在數論領域,RH代表黎曼猜想。

    Riemann Hypothesis,七個數學千年難題中的一個。

    1858年,哥廷根大學的教授黎曼在一篇只有8頁關於素數分布的論文中,提出了著名的黎曼猜想。

    一兩百年過去了,正如穆勒所言,數學家們絞盡腦汁,該用的辦法都已用盡,RH仍未被完全證明。

    「是的,正如你理解的那樣,沈奇,RH就是黎曼猜想。」穆勒將手中的論文稿遞給沈奇,輕描淡寫的說到:「這個課題有一定難度,卻也充滿樂趣。」

    沈奇接過論文先看摘要、引言,他無比興奮,穆勒教授的團隊正在向RH發起猛烈攻勢!

    黎曼假設的核心是黎曼zeta函數ζ(s)=Σn^-1(Re(s)>1),其性質是解決數論問題的強有力工具,在解析數論中有著舉足輕重的作用,一直是解析數論研究的熱點課題。

    眾所周知,素數在自然數中的分布並不遵循任何規律,然而黎曼觀察到素數的分布與函數ζ(s)密切相關:函數ζ(s)的所有復零點都在σ=1/2這條垂直的直線上。

    如果這個猜測正確,那麼素數分布就有規律可循,並且數論中的許多問題也就迎刃而解了。

    第213章 黎曼假設的新思路

    七個千年數學難題真的很難破解。

    目前只有龐加萊猜想被攻克,俄羅斯數學家佩雷爾曼在數學天才呂丘建的基礎上徹底證明了龐加萊猜想。

    黎曼假設提出於19世紀,跨越整個20世紀,在21世紀今天依舊金身不破。

    任何一位研究數論的數學家都有欲望證明RH,這將是載入史冊的豐功偉績。

    正如哥猜的證明過程那般困難,RH歷經三個世紀並未被完全證明。

    哥猜的1+1亦未被證明,但陳景潤先生證明了1+2,這是最接近哥猜的一個結果。

    一步到位完全證明RH、哥猜是不容易做到的事情,歷史說明了一切。

    數學家們對於RH的階段性證明持續了幾個世紀。

    關於黎曼zeta函數ζ(s)的表示公式,對任意複數,若Re(s)>1,則:

    ζ(s)=Σn^-s=∏(1-p^-s)^-1

    其中n為自然數,p為素數。

    數學家們想盡了一切辦法,用盡了一切手段,從歐拉經典公式到伯努利數,再到正奇數時的拉馬努金公式,終於作出了重要的階段性進展,k=3,5和k=4,6,7的特殊情況得到了當代全部數學家的認同。

    現在,階段性進展和RH完全證明之間還差一道橋樑。

    這道承上啟下的關鍵橋樑就是ζ(2n+1)的兩個遞推公式。

    如果能證明ζ(2n+1)的兩個遞推公式,那麼沈奇相信,穆勒教授的團隊離最終證明RH已不遠。

    讓沈奇興奮的是,他手中的這份半成品論文,正是關於ζ(2n+1)兩個遞推公式的論述證明。

    這份論文的框架由穆勒設定,具體論述證明由瑪麗執筆。

    顯而易見,穆勒教授的戰略方向是正確的,但瑪麗的戰術執行成效甚微。

    瑪麗的戰術打法太老套,按你這種計算證明推導邏輯,RH早該被完全證明了,但事實並非如此。沈奇將論文稿還給穆勒,說到:「我們需要一個新的引理,證明k=1時的結論成立,那麼ζ(2n+1)兩個遞推公式有望合情合理的被推導出來,從而向RH的完全證明發起總攻。」

    「嘿,孩子,我也曾這麼考慮過!」穆勒眼睛一亮,望向沈奇。

    「我們?」瑪麗質疑的看著沈奇,隨即理所當然的說到:「對,我們,這是我和艾倫共同研究的課題。」

    「瑪麗,我有個大膽的想法,可以邀請沈奇加入我們的團隊,共同研究ζ(2n+1)這個課題。你覺得呢?」穆勒非常民主,他禮貌地詢問他的學生瑪麗。

    「我覺得,我們應該維持現狀,因為現狀並沒有什麼不妥。」瑪麗露出一種古怪的表情。

    「我很樂意加入穆勒教授ζ(2n+1)課題項目組。」沈奇不理會瑪麗的質疑表情,直接向穆勒表明決心。

    「你的主攻方向是數學物理,輔助方向是代數幾何。沈,別告訴我你還想再加一個數論方向。」瑪麗冷冷說到。

    「穆勒教授是我的偶像,他精通數學物理、代數幾何、數論、群論等多個領域。我的二輔選擇數論,對於我,對於整個團隊並無壞處。」沈奇答到。

    「沈奇,如果你的女朋友同意你輔修數論,我沒什麼問題,之前我就跟你說過,你為什麼不選擇數論,畢竟你是埃隆表揚過的學生。」穆勒有意讓沈奇跟瑪麗合作。

    「她會同意的。」沈奇無法錯過和普大數學研究團隊一起攻克RH的機會,歐葉一定會同意並支持他這麼做的。

    「瑪麗,為什麼不給沈奇一個機會呢,你需要他的幫助。你也承認,在你的博士畢業論文中引用了沈奇的算法,你們實際上已經合作過一次了。」穆勒笑眯眯和藹的說到,「沈奇是個了不起的學生,他用兩年時間發表了十篇數學論文。瑪麗,我和你在本科期間加起來的論文數量,正好是沈奇的一半。」
關閉