第442頁
2023-09-22 03:13:33 作者: 鴻塵逍遙
這是除了直接推導證明法之外最常用的證明方法,面對許多猜想時非常重要。
尤其是……在證明某個猜想不成立時!
但程諾現在當時不是要尋找反例,證明Bertrand假設不成立。
切爾雪夫已然證明這一假設的成立,使用反證法,無非是將證明步驟進行簡化。
程諾自信滿滿。
第一步,用反證法,假設命題不成立,即存在某個n≥2,在n與2n之間沒有素數。
第二步,將(2n)!/(n!n!)的分解(2n)!/(n!n!)=Πps(p)(s(p)為質因子p的冪次。
第三步,由推論5知p<2n,由反證法假設知p≤n,再由推論3知p≤2n/3,因此(2n)!/(n!n!)=Πp≤2n/3 ps(p)。
……
第七步,利用推論8可得:(2n)!/(n!n!)≤Πp≤√2n ps(p)·Π√2n